
Duration Probabilistic Automata

Danny Bøgsted Poulsen
dpouls09@student.aau.dk

Jonas van Vliet
jvanv09@student.aau.dk

January 24, 2011

Duration Probabilistic Automata (DPA) is a formal-
ism for modelling concurrent execution of sequences
of tasks. This formalism is well suited for schedul-
ing problems such as job shop. We show how DPAs
can be translated to other formalisms and how sta-
tistical modelchecking can be applied. The perfor-
mance of these translations is tested using the tools
Uppaal and PRISM. The results show that the Up-
paal translation is the fastest of the two. Further-
more, the Uppaal translation was found viable for
verifying DPAs that consist of 55 sequences of tasks
with 55 tasks each.

1 Introduction

Modelchecking has been used to verify the correctness
of a system for three decades. The problem that keeps
it from being applicable to larger cases is the infamous
state space explosion problem. To avoid this problem,
hypothesis testing has been used to reason about the
behaviour of a system. Hypothesis testing does not
provide an absolute guarantee that a property holds
- instead it bounds the probability of commiting an
error.
Duration Probabilistic Automata(DPA) is a model
that consists of sequences of tasks. Each task has
a duration interval which specifies how long the task
takes to complete. A probability mass function over
the interval is used for discrete models, and a prob-
ability density function in the continuous case. This
model is useful for modelling thread scheduling and
other scheduling related problems.
Probabilistic models are convenient for expressing
real-world problems. For instance, driving to work
is a task that on average takes 20 minutes, but can
take 15-25 minutes depending on the traffic condi-
tions. The probability for each duration in the inter-

val 15-25 is the same. Allowing a duration interval
seems appropriate to model this compared to a fixed
duration. The good case (15) is too optimistic and
the worst case (25) is too pessimistic. Assuming that
we leave 23 minutes before we have to be at work,
the average case (20) cannot appropriately model the
chance of coming late to work.
To model more real life behaviour, resources are used
to model conflicts between different tasks. In the go-
ing to work setting, this could be the bathroom that
each member must use before going to work. Assum-
ing the bathroom cannot be shared this leads to con-
flicts.
What is a good schedule? This can be answered by a
property such as "can I arrive at work before 8 in the
morning with a probability greater than 80 %?". To
verify such properties, tools are needed. In this arti-
cle we translate the DPA model into Timed Automata
and discrete time Markov Chains. We use the tools
Uppaal [4] and PRISM [3] to verify properties of the
DPAs on the translations. Uppaal supports prob-
ability approximation through simulation and prop-
erty estimation through hypothesis testing. PRISM
supports probability approximation through simula-
tion as well as property verification. The experiments
conducted concern the performance of probability ap-
proximation and property estimation. We also com-
pare against property verification for completeness.
The rest of this article is organised as follows: Section
2 describes the DPA formalism and considers both the
discrete and continuous cases. Section 3 describes hy-
pothesis testing and an adaption of a subset of PCTL.
Section 4 describes how a DPA can be translated into
other formalisms by describing translations to Up-
paal and PRISM. Section 5 contains experiments on
the performance of the translations.

1

dpouls09@student.aau.dk
jvanv09@student.aau.dk

2 Duration Probabilistic Au-
tomata

In this section we introduce the formalism Duration
Probabilistic Automata. This formalism was origi-
nally developed by Maler et al. [5] with inspiration
from scheduling problems.

Duration Probabilistic Automata consists of tasks. A
task is an abstraction of work that must be performed.
Its duration is bounded by an interval [a, b] and dis-
tributed according to a probability mass function ϕ.
Consider the tasks in the driving to work example.
Getting dressed beforehand takes 5-10 minutes and
eating breakfast takes 3-15 minutes.

Definition 1 (Task)
A task is a triple (a, b, ϕ) where

• a, b ∈ Z≥0 and a ≤ b, and

• ϕ is a probability mass function with range [a, b]∩
Z≥0. ♦

Consider having a processing unit capable of process-
ing a single task at a time in a prescribed order. This
is what we call a Simple Duration Probabilistic Au-
tomaton (SDPA). In our example, the person must
first get dressed, then eat breakfast and finally drive
to work.

Definition 2 (SDPA)
A Simple Duration Probabilistic Automaton is a tuple
(T,S, t1) where

• T is a set of tasks,

• t1 ∈ T is the initial task,

• S : T → (T ∪{_})\{t1} is a one-to-one mapping
that given a task returns its successor - the next
task to be executed. ♦

The function S introduces a non-circular ordering on
T ∪ _ ending with _. The symbol _ indicates that
all tasks have been performed.

Initially, an SDPA must start a task. The duration of
this task is drawn when starting the task with respect

to its probability mass function. When the SDPA
processes the task, the remaining duration decreases.
The SDPA ends the task when the remaining duration
reaches zero. It can then start the next task. After
completing the last task, the SDPA enters a state from
which it cannot move. A state of an SDPA consist of
a task and the remaining duration thereof. For an
SDPA S = (T,S, t1) we define the set of states

{(t,_), (t, x), (_,_) | t ∈ T ∧ x ∈ Z≥0}.

The semantics of S is a Markov Decision Process with
initial state (t1,_) and labels Z≥0 ∪ {startt, endt |
t ∈ T}. The transition rules are shown below:

(start)
(t,_)

startt−−−−→
ϕ(x)

(t, x)
t = (a, b, ϕ), a ≤ x ≤ b

(delay)
(t, x)

d−→ (t, x− d)
d ≤ x ∧ d ∈ Z≥0

(end)
(t, 0)

endt−−−→
1

(t′,_)
S(t) = t′, t 6= _

The nondeterministic choices in this markov decision
process are the delays chosen. The nondeterminism
seems somewhat artificial as it is given that the SDPA
from a state (t, x), x 6= 0 eventually ends up in a state
(t, 0), from where it will perform an end transition,
hence the actual delays performed do not matter for
the behaviour of the SDPA.

Example 3
Consider the SDPA depicted in Figure 1. Assuming
the probability distribution on both tasks is uniform,
the following is an execution of the SDPA:

(t11 ,_)
start

t11−−−−→
1
2

(t11 , 3)
2−→ (t11 , 1)

1−→ (t11 , 0)

end
t11−−−−→ (t12 ,_)

start
t12−−−−→

1
3

(t12 , 7)
7−→ (t12 , 0)

endt2−−−→ (_,_). ∗

Let Si = (T i,Si, ti1). We write a composition of n
SDPAs as S1‖S2‖ . . . ‖Sn and fix n as the number
of SDPAs in a composition. In our example, this
represents different people going to work. The state
of a composition contains the task of each SDPA and
the remaining duration of each task being processed.

2

t11start t12

[2,3] [5,7]

Figure 1: An SDPA with two tasks.

We fix T i = T i ∪ {_}. The task of each SDPA is
then represented by a task vector in the domain
T = T 1×T 2×· · ·×Tn. For a vector ~t = [t1, t2, . . . , tn]
we write ~t[i] to obtain ti and we write ~t[i/x] for the
vector where ti has been replaced by x.
To capture the duration of each SDPA we introduce
the concept of a duration valuation. Given an
index of an SDPA a duration valuation returns the
remaining duration or _ if the SDPA is inactive.
Formally a duration valuation for n SDPAs is a
function v : {1, 2, . . . , n} → Z≥0 ∪ {_}. As for task
vectors let v[i/d] be the valuation v′ where v′(i) = d
and agrees with v on all other values.

The domain V consists of all possible duration valua-
tions. The composition of SDPAs behaves as follows.
Each SDPA starts its own tasks. When delaying, all
SDPAs that have started a task delay simultaneously.
The SDPAs that have not started a task do nothing
meanwhile.

Let v be a duration valuation of a composition of n
SDPAs. To find the inactive SDPAs of the composi-
tion we need only find the SDPAs with v(i) = _.
For n SDPAs and a duration valuation v we define,

inactive(v) = {i | 1 ≤ i ≤ n ∧ v(i) = _},

and

active(v) = {1, 2, . . . , n} \ inactive(v).

In practice, tasks may require certain resources in a
setting where only a limited amount of resources are
available. A resource belongs to a specific resource
type, and a task can request resources of different
types. The available amount is defined by the envi-
ronment. Resources can not be consumed and a task
returns all resources requested when it ends. This
allows resource conflicts, which are solved by intro-
ducing a scheduler.
In our example, the bathroom can be considered a
limited resource. Consider a household with two bath-
rooms where five people live. All five people want to

shower before going to work but only two of them can
do so simultaneously, hence a scheduling mechanism
is used to decide who can use the bathroom first.

We fix the number of resources types to be m. Then
~r ∈ Zm≥0 denotes a vector of resources such that an
element of ~r denotes the amount available of resource
number i. We denote the set of all resource vectors
of size m by R. The vector ~rinit denotes the initial
resources available in the environment.
We extend the notion of tasks to resource depen-
dent tasks, which are tasks that require resources
to start. The tuple representing a task is extended
with a resource vector ~r. We assume a function
req : T 1 ∪ T 2 ∪ · · · ∪ Tn → R that takes a task t
as input and returns its resource vector. We assume
that all tasks require less resources than the initial
amount available in the environment.

A scheduler chooses which tasks should start and
solves resource conflicts by prioritising the SDPAs.

Definition 4 (Scheduler)
A scheduler for the composition S1‖S2‖ . . . ‖Sn‖~rinit
is a function

sch : T × V ×R→ (2{1,2,...,n}, R)

If sch(~t, v, ~r) = (sta, ~u), then

• ~u = ~r −
∑
i∈sta req(~t[i]),

• for all i ∈ sta : ~t[i] 6= _ and

• sta ∩ active(v) = ∅.

Furthermore, if sch(~t, v, ~r) = (∅, ~u), then

• for all i, 1 ≤ i ≤ n, ti = _,

• ~r 6= ~rinit or

• active(v) 6= ∅. ♦

A scheduler returns the resources remaining in the
environment after starting a possibly empty set
of SDPAs. The scheduler never attempts to start
an SDPA that has already ended or is already
performing a task. When it decides not to start
any tasks, it is because all SDPAs have ended, less
resources are available than the total amount in the
composition or some SDPA is still performing a task.

3

These conditions ensure progress when a composition
of SDPAs is run.

The composition of n SDPAs, resources and a sched-
uler forms the model we work with in this paper.

Definition 5 (DPA)
A Duration Probabilistic Automaton is a composition
S1‖S2‖ . . . ‖Sn‖~rinit‖sch. ♦

For notational convenience let:

(v − d)(i) =

{
v(i)− d if v(i) 6= _
_ otherwise

,

The states of a DPA S1‖S2‖ . . . Sn‖sch‖~rinit are ele-
ments from

{(~t, v, ~r, s) | ~t ∈ T ∧ v ∈ V ∧ ~r ∈ R ∧
s ∈ {run, plan}}

A state containing run is essentially running, meaning
it can perform delays and end tasks but not start any
new tasks. States containing plan are planning to
start tasks, and can neither delay or end tasks.

The formal transition rules for a DPA
S1‖S2‖ . . . Sn‖sch‖~rinit are shown in Figure 2.
The first rule states that when the scheduler is
planning, it can start SDPAs (possibly none) and
then allow SDPAs to delay. The second rule performs
delays in states where the SDPAs are running. This
only happens when some SDPA is active. The third
rule states that when the SDPAs are running and at
least one SDPAs clock has reached zero, it can end
and move to the next task.

t21start t22

[1,3] [4,8]

Figure 3: An SDPA with two tasks.

2.1 Scheduler Specification

Different schedulers provide different sequences of
task executions, hence the behaviour of a DPA is

highly dependent on the scheduler applied. The
scheduler used in this paper is a fixed priority sched-
uler (fp).
Consider a DPA S1‖S2‖S3‖~rinit‖sch, a task vector ~t,
a duration valuation v and a resource vector ~r, such
that

• sch = fp,

• ~t = [t1, t2, t3],

• active(v) = ∅,

• ~rinit = ~r = [5, 2, 3],

• req(t1) = [2, 1, 2], req(t2) = [4, 1, 0], and

• req(t3) = [1, 1, 1].

The fixed priority scheduler attempts to start the
three tasks in increasing order. First it attempts to
start t1. Since enough resource are available, it adds
its SDPA to the list of SDPAs to start. Then it re-
moves the resources used from the pool of available re-
sources, hereby obtaining the resource vector [3, 1, 1].
It then attempts to start t2, but cannot due to a lack
of resources. Finally, it attempts to start S3, which
also succeeds since enough resource are available. The
scheduler adds it to the list of SDPAs to start and
removes the required resources from the pool of avail-
able resources and returns the list and the resources.

The implementation of the fixed priority scheduler is
seen in Algorithm 1. Note that we assume the re-
source requirement function req is available in the
scheduler.

2.2 Continuous DPA

A continuous time DPA is obtained by replacing the
discrete random variable and probability mass func-
tion of each task with a continuous random variable
and an associated probability density function. In
this section we provide the intuition for understanding
DPAs in a continuous time setting. A formal seman-
tics is given by Maler et al. [5].
The probability of a continuous random variable ob-
taining a specific is zero thus we can no longer find
the probability of a specific trace. We can however
find the probability of an infinite set of traces.

Consider running the DPA in Figure 4 and assume
there are no resource conflicts between any tasks.

4

start
[(~t[i],_)

startti−−−−→
pi

(~t[i], xi)]i∈sta

(~t, v, ~r, plan)
startsta−−−−−→
Πi∈stapi

(~t, v[i/xi]i∈sta , ~u, run)
(sta, ~u) = Sch(~t, v, ~r)

delay
[(~t[i], v(i))

d−→ (~t[i], v(i)− d)]i∈act
(~t, v, ~r, run)

d−→ (~t, v − d, ~r, run)
∅ 6= act = active(v) and
d ∈ Z≥0

end
[(~t[i], v(i))

endti−−−→ (t′i,_)]i∈e

(~t, v, ~r, run)
ende−−−→

1
(~t[i/t′i]i∈e, v[i/_]i∈e, ~u, plan)

∅ 6= e = {i | v(i) = 0} and
~u = ~r +

∑
i∈e req(t[i])

Figure 2: The transition rules of DPAs using a discrete semantics.

Algorithm 1: Fixed priority scheduler.

Input: A task vector ~t, a duration valuation v, a
resource vector ~r.

Output: A set of nonnegative integers sta and a
resource vector ~u.

1 sta := ∅ ;
2 ~u := ~r ;
3 for i := 1 to n do
4 if ~t[i] 6= _ ∧ i ∈ inactive(v) then
5 if ∀j ∈ [1;m] : req(~t[i])[j] ≤ ~u(j) then
6 sta := sta ∪ {i} ;
7 ~u := ~u− req(~t[i]) ;
8 end
9 end

10 end
11 return (sta, ~u)

This means that a task is started whenever the pre-
ceding task terminates. The possible interleavings of
tasks terminating are:

t11 , t
1
2 , t

2
1 , t

2
2 ,

t11 , t
2
1 , t

1
2 , t

2
2 ,

t11 , t
2
1 , t

2
2 , t

1
2 ,

t21 , t
1
1 , t

1
2 , t

2
2 ,

t21 , t
1
1 , t

2
2 , t

1
2 ,

t21 , t
2
2 , t

1
1 , t

1
2 .

We refer to these sequences as the qualitative be-
haviours[1] of the DPA. Due to timing constraints
some of these are more likely than others and some
might even be impossible. In the following we calcu-
late the probability of the qualitative behaviour

t21 , t
2
2 , t

1
1 , t

1
2 .

t21start t22

[2,5] [2,3]

t11start t12

[2,5] [1,2]

Figure 4: A DPA.

We use the convention that ϕi
j refers to the probabil-

ity density function of tij and for simplicity we let the
durations be uniformly distributed. Also we write dij
for the duration of tij .
We calculate the probabilities in a stepwise fashion.
For each configuration1 the DPA is in, the probabil-
ity of the correct task terminating is calculated. The
probability of the qualitative behaviour is the prod-
uct of all these probabilities. Initially the SDPAs pro-
cesses t11 and t21 . In Figure 5 the possible durations of
these have been plotted as the grey area.

Since we want t21 to terminate before t11 we can de-
duce that d21 < d11 . On Figure 5 the area below the
dashed line contains the points where d21 < d11 thus
the probability of terminating t21 before t11 is∫ 5

2

∫ d11

2

ϕ1
1(d

1
1) · ϕ2

1(d
2
1)dd

2
1dd

1
1 =

1

2
.

While processing t21 , time was also spent on t11 hence
in order to terminate t22 before t11 it must be the case
that

d22 < d11 − d21 .
1The running tasks

5

d21

d11

Figure 5: Plot of the possible durations of t11 and t21 .

To find this probability we first need to know what
range d11−d21 lies in. Obviously a lower bound for this
range must be when both have its smallest possible
duration i.e. 2 and an upper bound must be when
d21 = 2 and d11 = 5 thus

(d21 − d11) ∈ [2− 2, 5− 2] = [0, 3].

Figure 6 shows the possible remaining duration of t11
and the possible duration of t22 .

t22

d21 − d11

Figure 6: Possible duration for t22 and the remaining
duration of t11 i.e. d21 -d11

Assume we have a probability density ϕ over d21 − d11 ,
then the probability of terminating d22 before d11 can
be found by ∫ 3

2

∫ 3

d22

ϕ2
2(t

2
2) · ϕ(t)dtdd22 ,

where t=d21 − d11 .

From probability theory a probability density is the
derivative of the cumulative distribution function thus

ϕ(t) = P (d11 − d21 ≤ t|d21 < d11)
′.

The cumulative distribution over d21−d11 can be found
as

P (d21 − d11 ≤ t | d21 ≤ d11) =∫ 2+t

2

∫ d11
2

+
∫ 5

2+t

∫ d11
d11−t∫ 5

2

∫ d11
2

=

2 · (
∫ 2+t

2

∫ d11

2

+

∫ 5

2+t

∫ d11

d11−t
),

where all integrals are over ϕ1
1 · ϕ2

1 and 0 ≤ t ≤ 3.
Figure 7 shows how the bounds of integrals are found.

d21

d11

d11 = d22

d21 = d11 − t

(2 + t, t)

(t, 0)

Figure 7: The points within the scratched area all
have 0 ≤ d21 − d11 ≤ t.

Using this gives

∫ 3

2

∫ 3

d22

ϕ2
2(d

2
2) · ϕ(t)dtdt22 =

1

27
.

After terminating t22 , the remaining tasks terminate
in the order t11 , t12 with probability 1.

The probability of the qualitative behaviour
t21 , t

2
2 , t

1
1 , t

1
2 is, based on the above calculations,

1

2
· 1
27

=
1

54
≈ 1, 87%.

Instead of calculating the probabilities on the fly, we
could instead derive the relation between the dura-
tions, for instance that d21 − d11 ≤ d22 and integrate
over the solutions to the inequalities found. For in-

6

stance, the set of solutions to

2 ≤ d11 ≤ 5

2 ≤ d21 ≤ 5

2 ≤ d22 ≤ 3

1 ≤ d12 ≤ 2

2 ≤ d22 ≤ 3

d21 − d11 ≤ d22

would constitute all the possible combinations of
durations for the qualitative behaviour t21 , t22 , t11 , t12 .
Integrating ϕ1

1 · ϕ1
2 · ϕ2

1 · ϕ2
2 over the solution space of

the inequalities would provide the probability of the
behaviour. This idea was proposed by Bozga et al. [1].

3 Logic specifications and statis-
tical model checking

In this section we introduce the logic in which we spec-
ify requirements to DPAs. Furthermore we review hy-
pothesis testing as this has applications in statistical
model checking. The material covered in this section
applies for both discrete and continuous DPAs unless
explicitly stated otherwise in the text.

3.1 Trace

A sequence of transitions of a DPA is called a trace of
the DPA. The probability of a trace from a discrete2
DPA is defined as the product of the individual prob-
ability transitions. The composition of the SDPAs in
Figure 1 and 3, and ~rinit‖fp, where

• ~rinit = [5],

• req(t11) = [3], req(t12) = [5],

• req(t21) = [2], and req(t22) = [1],

2In the continuous time setting we find the probability of a
set of traces, not a specific trace

form a DPA that can create the following trace.

([t11 , t
2
1], [_,_], [5], plan)

start{1,2}−−−−−−→
1
2 ·

1
3

([t11 , t
2
1], [3, 1], [0], run)

1−→
1

([t11 , t
2
1], [2, 0], [0], run)

end{2}−−−−→
1

([t11 , t
2
2], [2,_], [2], plan)

start2−−−−→
1
5

([t11 , t
2
2], [2, 5], [1], run)

2−→
1

([t11 , t
2
2], [0, 3], [1], run)

end{1}−−−−→
1

. . .

The trace has the probability 1
2 ·

1
3 ·

1
5 ·. . . . By Pr(τ) we

denote the probability of the trace τ and by traces(s)
we denote all traces emanating from the state s.
The path of a trace is the sequence of states that the
trace passes through annotated with the global time
passed. The path over the trace shown before is

([t11 , t
2
1], [_,_], [5], plan)0, ([t11 , t

2
1], [3, 1], [0], run)

0,

([t11 , t
2
1], [2, 0], [0], run)

1, ([t11 , t
2
2], [2,_], [2], plan)1,

([t11 , t
2
2], [2, 5], [1], run)

1, ([t11 , t
2
2], [0, 3], [1], run),

3

. . . .

To obtain the path of a trace τ we write path(τ).

3.2 Logic

Requirements to a DPA are specified in Probabilistic
Computation Tree Logic (PCTL) developed by Hans-
son and Jonsson [2].

Definition 6 (PCTL)
The syntax of a state formula is generated by the ab-
stract syntax,

f, f1, f2 ::=tt | a | ¬f
f1 ∧ f2 | P./θ(γ)

where a is an atomic proposition, ./∈ {≤,≥}, θ ∈
[0, 1] and γ is generated by the syntax for path for-
mulae below

γ ::= Xf | f1 U f2 | f1 U≤d f2,

where d ∈ R≥0. ♦

7

s � tt

s � a if a ∈ AP(s)

s � ¬f if ¬(s � f)
s � f1 ∧ f2 if s � f1 ∧ s � f2

s � P./θ(γ) if Pr({τ | τ ∈ traces(s) ∧ path(τ) ` γ}) ./ θ
sd11 , s

d2
2 , . . . , s

dn
n ` Xf if sd22 � f

sd11 , s
d2
2 , . . . , s

dn
n ` f1 U f2 if there exists an i ≤ n s.t. sdii � f2

and ∀1 ≤ j < i, s
dj
j � f1.

sd11 , s
d2
2 , . . . , s

dn
n ` f1 U≤d f2 if there exists an i ≤ n s.t. sdii � f2

and ∀1 ≤ j < i, s
dj
j � f1

and di − d1 ≤ d.

Figure 8: Satisfaction relations

We define a satisfaction relation (�) between a state
formula and a state (s) and a satisfaction relation (`)
between a path and a path formula. In the satisfac-
tion rules in Figure 8 we assume a function AP that
generates all atomic propositions satisfied by a state.

The atomic propositions we consider are whether a
task is active, if a task has been executed or if a task
is waiting to be executed. Formally, the set of atomic
proposition over a DPA D = S1‖S2‖ . . . ‖Sn is the set
{t.active, t.ended, t.waiting | t ∈ T 1∪T 2∪· · ·∪Tn}.
We say a DPA D satisfies a state formula f if the
initial state of D satisfies f .

Using the logic we express properties such as “Does t1
start before t2 with certainty greater than 0.2” as

P≥0.2(¬t2.active U t1.active)

and “Do t1 and t2 run at the same time with certainty
greater than 0.1” as

P≥0.1(tt U t1.active ∧ t2.active).

Determining whether s � P./θ(γ) holds requires com-
puting Pr({τ | τ ∈ traces(s)∧path(τ) ` γ}). To find
the exact probability we must examine all traces and
determine how large a percentage of these satisfy γ.
This approach is not viable in practice in large cases,
as it will encounter the state space explosion problem.
In the next section we describe how the probability
can be estimated and error bounds can be given.

3.3 Hypothesis testing

Verifying a property often requires exploring branches
of the underlying transition system until the property
is proven true or false. In many cases, all reachable
states must be explored. This is a problem for large
systems since the size of the state space grows expo-
nentially with the size of the model - often called the
state space explosion problem. This makes verifying
these system impractical. To avoid this problem,
hypothesis testing[6] estimates the probability that
a property holds based on simulations of a system.
This method cannot guarantee a correct result, but
bounds on the probability of making an error have
made this a viable approach to model checking.

Consider a DPA D and a property P≥θ(f), where f
does not contain any probabilistic operators. Since f
does not contain probabilistic operators, we can al-
ways decide whether a trace satisfies f or not. Using
this we generate a sample of traces of D and evaluate
how many of these satisfy f . Let k be the number
of traces satisfying f and let m be the total number
of traces in the sample. Furthermore let η be the
real probability of an arbitrary trace satisfying f . In
term from theory of probabilities, the m traces are an
experiment with the k number of traces satisfying f
being the outcome thus we have of discrete random
variable X over this experiment. As a given trace ei-
ther satisfy f or not , X has a binomial distribution
with the success parameter η. .

8

To verify whether D satisfies P≥θ(f) we use our sam-
ple to test the hypothesis

H0 : η ≥ θ

against
H1 : η < θ.

In case H0 is a true hypothesis then the sample
should reflect this thus we expect that k ≥ θ ·m. If
this is indeed the case we accept H0

3. However, as
the sample is drawn at random it may be the case
that k < θ ·m although H0 is correct. As an example
consider the case where θ = 0.4 and m = 100 thus we
expect k to be 40. If k = 35 it is still reasonable to
think that H0 is true whereas if k = 10 it is unlikely
that H0 is correct. In the latter case, we refute H0 in
favour of H1, although H0 could be correct.

To specify when to refute H0, a level of significance is
required. The level of significance describes the will-
ingness to reject a true H0. Let α be the significance
level, then H0 is rejected if and only if k < c where
c ≤ m is the biggest integer such that

c∑
i=0

(

(
m

i

)
θi · (1− θ)m−i) ≤ α,

where
(
m
i

)
is the binomial coefficient. The range 0 to

c is known as the critical region.

Example 7
Let P≥0.4(f) be a property we wish to verify and let
f have no probabilistic operators. A sample of 100
traces has been obtained of which 35 satisfy f . Let η
be the real probability of a arbitrary trace satisfying
f . To verify the property we test the hypothesis

H0 : η ≥ 0.4,

at significance level α = 0.05.

Using the aforementioned approach we find the
biggest integer between 0 and 100 for which

c∑
i=0

(

(
100

i

)
0.4i · (1− 0.4)100−i) ≤ 0.05.

In this case c = 31. As c < 35 we accept H0 and
thereby accept that P≥0.4(f) is satisfied by the sys-
tem.

3We cannot refute H0, but this does not prove that it is
correct.

The level of significance provides a way to bound the
probability of rejecting a true hypothesis - known as
a type-1 error. The second kind of error one can com-
mit is a to accept a false hypothesis - a type-2 error.
Bounding this probability is more difficult as it de-
pend on the true value of η.
What we can do is to find a power function g : [0, 1]→
[0, 1] that given a parameter produces the probability
of rejecting H0. In Example 7 the power function
would for instance be

g(η) =

31∑
i=0

(η)i · (1− η)100−i,

thus the probability of obtaining an observation in the
critical region given that the true probability is η.

Instead of only bounding the type-1 error we may also
bound the probability of committing a type-2 error.
To do so we introduce an indifference region[7]. Let
P≥θ(f) be the property we wish to test, then our in-
difference region is

[θ − δ, θ + δ],

for some δ. Let η be the actual probability of satisfy-
ing f .
The hypotheses we test are then

H0 : η ≥ θ + δ

against
H1 : η ≤ θ − δ.

Again let m be our sample size and let k be the num-
ber of traces satisfying f . Furthermore let α be our
wanted level of significance and let β be the wanted
probability of committing a type-2 error i.e. the power
of the test. Choosing the biggest integer c ≤ m such
that

c∑
i=0

(
m

i

)
(θ + δ)i · (1− (θ + δ))m−i ≤ α (1)

and accepting H0 if k > c ensures the probability of
committing a type-1 error is less than α.
In case

1−
c∑
i=0

(
m

i

)
(θ − δ)i · (θ − δ)m−i ≤ β (2)

we say that the test has power β. In practise it means
that if η ≤ θ− δ then the probability of accepting H0

9

is less than β.
If we can generate sample traces, it is possible to fix
β and instead find values of m and c by solving (1)
and (2). Multiple solutions of course exists to these
equations but to minimise the verification effort we
wish to find one with low m. In his thesis, Younes
[7] proposes an algorithm based on binary search that
given the indifference region (θ± δ), α and β finds m
and c.

4 Translations

In this section we translate the DPA model into other
modelling formalisms. This allows us to use existing
verification tools to verify DPA models. We have cho-
sen to use the Network of Timed Automata formalism
(used in the tool Uppaal) and discrete time markov
chains (used in the tool PRISM). In both cases, we
present translations that are based on an assumption
of a uniform distribution over the tasks durations.

4.1 PRISM

The core component of a PRISM program is a
module. A module consists of variables and guarded
transitions with a probabilistic outcome that alters
the variables. The variables are bounded integers or
booleans.

In our translation a module is created for the sched-
uler and a module is created for each of the SDPAs.

4.1.1 SDPA module

For each SDPA Si we create a PRISM module that
has the variables

• clockSi with range 1, 2, 3, . . .maxC where maxC
is the maximal duration of any task of Si,

• activeSi with range true, false,

• taskSi, with range 1, 2, 3, . . . , |T i|+ 1 and

• paybackSi with range true, false.

The variables clockSi, activeSi and taskSi are used
to encode the state of the SDPA. For instance, a state

(tij , x) is encoded by setting clockSi = x, activeSi =
true and taskSi = j. A state (tij ,_) is encoded
by setting taskSi = j and activeSi = false. The
state (_,_) is similarly encoded by setting taskSi =
|T i|+ 1.
When starting Si the scheduler allocates resources for
it thus when Si terminates the scheduler must re-
claim these resources. By setting paybackSi to true
the SDPA indicates to the scheduler that it has ter-
minated and that the scheduler should reclaim the
resources. When the resources have been reclaimed
paybackSi must be reset to false.
The following snippet stems from an SDPA with 2
tasks where the maximal duration of any task is 7
time units.

module S1
taskS1 : [1 . . 3] i n i t 1 ;
c lockS1 : [0 . . 7] i n i t 7 ;
paybackS1 : bool i n i t f a l s e ;
ac t iveS1 : bool i n i t f a l s e ;

A statement such as taskS1 : [1..3] init 1 declares a
variable taskS1 that can obtain the values 1, 2, 3 and
initially set to 14. As taskS1 maximally obtains the
value 3 we see this SDPA must execute 2 tasks. To
start processing a task the SDPA module awaits syn-
chronisation on its start label startS1. The transition
rules starting the intial task are shown below. The
guards of this rule states that

• S1 must not be active,

• S1 must not need to repay any resources, and

• the task to be started must be t11 .

[s t a r tS1] (! ac t iveS1 & ! paybackS1
& taskS1=1)

−>
1/2 : (act iveS1 ’= true) & (clockS1 ’=2)+
1/2 : (act iveS1 ’= true) & (clockS1 ’=3) ;

The outcome of this rule is setting activeS1 to true and
clockS1 to either 2 or 35. This choice is probabilistic
hence with probability 1

2 clockS0 is set to 2 and with
probability 1

2 to 3.

4In general variable declarations have the form:
identifier : type init value where value is the initial
value of the type type identified by identifier

5Transitions have the form [sync-label]
guard −> probability:updates+probability:updates+....
The sync label is optional and used to force two modules to
move simultaneously. Multiple updates are separated by &
and in updates, variable assignments are denoted by "’=".

10

Time must start after starting t11 . This is accom-
plished by the transition rule below.

[de lay] (ac t iveS1 & clockS1>0 &
taskS1<3 &
(! paybackS1))
−>

1/1 : (c lockS1 ’=clockS1 −1);

The guard of this rule states that

• the SDPA must be active,

• the clock must be greater than zero,

• the SDPA must not have finished all of its task
and

• the scheduler must not need to reclaim any re-
sources.

In case Si is not active but another SDPA is, a dummy
delay rule is necessary. The rule does nothing except
allowing other SDPAs to delay. The rule is required
because PRISM requires every module to participate
in a synchronisation. This only applies if some rule of
the module synchronises on the channel.

[de lay] ((! ac t iveS1) &
(! paybackS1))
−>

1/1 : (act iveS1 ’= f a l s e) ;

During execution clockS1 eventually reaches zero and
the module needs to inform the scheduler module it
has finished. This happens by synchronising on the
end label.

[end] (ac t iveS1 & clockS1=0 &
taskS1<3 &
(! paybackS1))
−>

1/1 : (act iveS1 ’= f a l s e) &
(taskS1 ’= taskS1+1) &
(clockS1 ’=7) &
(paybackS1 ’= true) ;

The guard of the rule states that

• S1 should be active,

• its clock should be zero,

• it has not processed its final task, and

• it should not need to repay resources.

If these conditions are satisfied it goes to inactive (by
setting activeS1 to false), moves on to the next task
(by incrementing taskS1) and sets the clock to some
value greater than zero. It also indicates to the sched-
uler that its resources should be reclaimed (by setting
paybackS1 to true).

Two dummy rules are used for the end transitions in
the module.

[end] ((! c lockS1=0) & (! ac t iveS1) &
(! paybackS1))

−>
1/1 : (act iveS1 ’= f a l s e) ;

[end] (ac t iveS1 & (! c lockS1=0) &
min (clockS1 , c lockS2)=0
& taskS1<3 & (! paybackS1))

−>
1/1 : (c lockS1 ’= clockS1) ;

The first dummy rule is applied when the SDPA is
not active and the second is used when the SDPA is
active but has not finished its task (!clockS1=0). The
min(clockS1,clockS2) is used to get the minimum value
of all clocks.

The final transition rule used by the SDPA mod-
ule is the payback rule. This rule synchronises with
the scheduler and is used to inform the SDPA that
the scheduler reclaims the resources hence the SDPA
should set its payback variable to false.

[S1payback1] (paybackS1 & taskS1=2)
−> 1/1 : (paybackS1 ’= f a l s e) ;

Although the payback is made for t11 , taskS1 must be
equal to two. This is because we incremented taskS1
while ending t11 .

4.1.2 Scheduler module

For a DPA consisting of n SDPAs and m resource
types the scheduler contains the variables:

• counter with range 0 to n+ 1,

• planning with range false and true,

• doPayback with range false and false,

• timePassed with the range 0 tomaxTime, where
maxTime is the time used if all tasks were pro-
cessed sequentially after each other.

11

and an integer variable resi for all i in [1,m] ∩ Z≥0.

Below is an example of a scheduler for one resource
type and two SDPAs (n = 2).

module s chedu l e r
doPayback : bool i n i t f a l s e ;
counter : [1 . . 3] i n i t 1 ;
p lanning : bool i n i t t rue ;
r e s1 : [0 . . 1 0] i n i t 10 ;
timePassed : [0 . . 1 2 0] ;

The planning and doPayback variables are used to
encode the state of the scheduler. If planning = true
and doPayback = true the scheduler is in a state
where it reclaims resources from tasks that has termi-
nated. If planning = true and doPayback = false the
scheduler is calculating which SDPAs to start. This
corresponds to plan-states from the DPA semantics.
If planning = false the scheduler is inactive and
awaits the termination of some task, corresponding to
the run-states. From the above we see the scheduler
starts in a state where it can start SDPAs.

When starting SDPAs the scheduler uses the counter
variable to iterate through all SDPAs, evaluates if
enough resources are available and if possible start
them and decrease the resources variables. This cor-
responds to the for-loop in Algorithm 1 and counter
corresponds to i in the algorithm.
Let t11 require 7 of resource res1 then the start rule is:

[s t a r tS1] ((! doPayback) & planning &
counter=1
& taskS1=1 & (! ac t iveS1)
& res1 >=7)

−>
1/1 : (counter ’= counter+1) &

(res1 ’= res1 −7);

This rule states that if the scheduler is starting SD-
PAs, we are considering SDPA 1, task number 1, it
is not active and enough resources are available, then
subtract 7 from the resource type res1, synchronise
on the start label and consider the next SDPA.
The scheduler moves to the next SDPA if the SDPA
is running, insufficient resources are available or the
SDPA has finished.

[] (p lanning & counter=1 & taskS1=1
& (! ac t iveS1) & (res1 <7)
& (! doPayback))

−> 1/1 : (counter ’= counter +1);

[] (p lanning & counter=1 & taskS1=3

& (! ac t iveS1) & (! doPayback))
−>
1/1 : (counter ’= counter +1);

[] (p lanning & counter=1 & taskS1<3
& act iveS1 & (! doPayback))

−> 1/1 : (counter ’= counter +1);

The scheduler enters a waiting state when counter =
n + 1 i.e. when all SDPAs have been attempted
started.

[] ((! doPayback) & planning & counter=3)
−> 1/1 : (planning ’= f a l s e) ;

The scheduler enters the payback state when some
SDPA finishes its task by synchronising on the end
label.

[end] ((! p lanning) & (! (taskS1=3
& taskS2=3 & true)))

−> 1/1 : (counter ’=1) & (planning ’= true)
& (doPayback ’= true) ;

In this state the scheduler works in much the same
way as when starting SDPAs. It iterates through all
SDPAs (using counter) and reclaims resources if an
SDPA has finished.

[] (counter=1 & (doPayback) &
(! paybackS1))

−>
1/1 : (counter ’= counter +1);

[S1payback1] (counter=1 &
doPayback) &
res1 <=3)
−>

1/1 : (counter ’= counter+1)
& (res1 ’= re s1 +7);

The first rule is applied when S1 has no resources to
repay. The second rule is used when it has. The guard
res1<=3 is required by PRISM to avoid overflowing
res1.

Finally the scheduler starts new SDPAs when it has
reclaimed resources from all SDPAs (hence counter =
n+ 1).

[] (counter=3 & doPayback & (! paybackS1)
& (! paybackS2) & planning)

−> 1/1 : (counter ’=1)
& (doPayback ’= f a l s e) ;

12

We let the scheduler synchronise on the delay label to
ensure that SDPAs only delay when the scheduler is
not planning,

[de lay] ((! p lanning) & timePassed <120)
−> 1/1 : (planning ’= f a l s e) &

(timePassed ’= timePassed+1);

Because PRISM requires every module that attempts
to synchronise to participate in the synchronisation,
this rule ensures delaying does not occur while the
scheduler is planning. Additionally we use the rule to
keep track of the time passed.

4.1.3 Logic translation

PRISM supports PCTL where atomic propositions
are boolean expressions over the variables. Translat-
ing a logic specification for a DPA into a PRISM
specification first involves translating the logic atomic
propositions. Let tij be the jth task to be executed of
SDPA Si. The atomic propositions of the DPA logic
is translated as

tij .active ::= taskSi = j ∧ activeSj = true

tij .waiting ::= taskSi = j ∧ activeSj = false

tij .ended ::= taskSi > j

State formulae are easily translated into PRISM but
path formulae require special attention. The cause
of the problem is the scheduler encoding. Instead
of starting tasks simultaneously they are started in a
step-wise fashion 6. Resources are reclaimed in a sim-
ilar way. This means an end transition in the DPA
semantics corresponds to a series of transitions in the
PRISM translation and likewise for the start transi-
tion. See Figure 9

The intermediate states resulting from these transi-
tions must be ignored while evaluating a formula. A
path formula like

f1 U f2

is therefore translated to

(f1 ∨ inter)U (f2 ∧ ¬inter),

where inter is an expression characterising the
intermediate states introduced by the translation.

6When planning = true

EndE Payback Start sequence

EndE StartS

Figure 9: The top represents the states visited in the
DPA semantics. The bottom represents the states
visited in the PRISM translation. The small circles
represent intermediate states that are not equal to any
DPA state.

The intermediate states in the translation are
those in which the scheduler is reclaiming resources
(planning = true, doPayback = true and counter <
n+1) and those in which the scheduler is starting SD-
PAs (planning = true and doPayback = false). The
states where planning = true, prismDoPayback =
true and counter = n + 1 correspond to plan states
in the DPA semantics. States with planning = false
correspond to run states in the DPA semantics.
On basis of the above we conclude that the inter
expression should characterise intermediate states as
all those where the scheduler is active except for the
states corresponding to plan states. Thereby inter is

planning = true ∧ ¬

 planning = true∧
doPayback = true∧
counter = n+ 1

 .

A similar construction, which we do not show, is
needed for translating Xf .
Due to our encoding of time, we cannot translate
f1 U./d f2 into PRISM.

4.2 Uppaal

Uppaal extends the Network of Timed Automata
formalism with variables. These variables can be
accessed directly through both guards and updates
through functions written in a C-like language or vari-
able references. It is in this setting that we translate
a DPA into a Uppaal model.

13

4.2.1 SDPA modeling

The translation of n SDPAs creates a TA for each
SDPA and a single TA modelling the scheduler. The
following are local variables used by each SDPA
model:

• int id is a unique identifier given to each SDPA.

• int duration is assigned a value in the duration
interval of a task.

• clock v is the clock associated to this model.

The following are variables shared between all TAs
that are used for signaling and control:

• broadcast channel start, end are one-to-many
communication channels.

• bool startNext[n] is an array of flags used to
signal which SDPAs must start.

• tasksCompleted[n] is an array containing in-
formation regarding the number of tasks each
SDPA has completed.

• ended[n] is an array of flags used to signal which
SDPAs have ended.

Figure 10 shows how an SDPA consisting of a single
task with duration [2, 3] is translated. The location
waitingforTask1 represents the state where the task
waits until the start signal is given. The start signal is
received over the channel start, but in order to make
the transition, the guard must be satisfied. The sched-
uler is responsible for both sending the start signal
and setting the values in startNext, hereby enabling
the guard. When a task is started, it immediately
resets its clock to zero and sets its startNext flag to
false. The model then enters a committed location, in
which it cannot delay. When the model moves out of
this location, it encounters a nondeterministic choice,
where the task is assigned a duration. When Uppaal
simulates a TA, it chooses uniformly amongs the non-
deterministic choices available. There exists an edge
for each integer in the duration interval. In the fol-
lowing location, task1, the invariant and the guards
on the outgoing edges ensure that the TA must wait
for the amount of time previously chosen.

When enough time has passed, two edges can lead it
to the location End. The upper edge sends a signal

over the end channel (denoted by !), while the lower
edge waits for a signal over the end channel (denoted
by ?). The lower edge is used when two SDPAs end
simultaneously, as only one SDPA can send a signal
over the end channel. When either of the edges is
taken, the SDPA registers that a task was completed
and sets ended[id] = true to indicate that it was one
of the SDPAs ending a task.

A SDPA consisting of several tasks is modelled by
replacing the End location with the translation of an
SDPA consisting only of the next task.

4.2.2 Scheduler modeling

We consider the fixed priority scheduler. Resources
are identified by their index. The scheduler contains
an internal representation of the resources available
and the resource requirements of each task through
the following variables:

• int resources[m] is an array representing the
resource vector of available resources.

• int resUsage[n][k][m] is a double nested ar-
ray containing the resource requirements for each
SDPA and task.

• bool waiting[n] is an array of flags. Each flag
indicates whether the SDPA with the same index
is waiting to run a task. Initialised with all flags
set to true.

The values of these variables are initialised according
to the model. During the execution of the model,
resUsage never changes.

Figure 11 shows the scheduler implementation. The
functions perform the following:

• chooseStart() This function is an implementa-
tion of Algorithm 1. To start an SDPA, it sets
its flag in startNext to true and sets it flag in
waiting to false.

• release() Releases the resources of the tasks
just finished (tasks are derived from ended and
tasksCompleted). Also sets the SDPAs flags in
waiting to false. When more than one SDPA
end simultaneously, the SDPAs are added to the
queue in a fixed order based on the SDPA id.

14

v >= duration

v=0, startNext[id]=false
duration = 2

v >= duration
startNext[id]
start?

end!

duration = 3

tasksCompleted[id]++,
ended[id]=true

tasksCompleted[id]++,
ended[id]=true

end?

waitingForTask1 Task1

v<=duration

End

Figure 10: A task modelled in Uppaal.

end?

start!
release()

chooseStart()

plan

run

Figure 11: A fp scheduler modelled in Uppaal.

The initial location plan only allows starting SDPAs.
The edge labeled with chooseStart sets the startNext
flags of the SDPAs it has determined can start. It
then sends the signal to start to all SDPAs and enters
the run location. Until this point, the scheduler has
been in committed locations and time has not been
able to pass. Now the scheduler must wait for an end
signal by some SDPA and time passes. When this
happens, it releases the resources and starts the next
round of SDPAs.

4.2.3 Comparison with DPA semantics

We say the DPA and the Uppaal model perform the
same actions if:

• When a DPA starts the SDPAs in the set S, the
scheduler module performs chooseStart and sets
the startNext flag for all SDPAs in S, followed
by a synchronisation over the start channel.

• When a DPA delays d time units, the Uppaal
model also delays d time units.

• When a DPA ends the SDPAs in the set E, the
Uppaal module synchronises over the channel
end followed by the scheduler performing release.

From a correctness point of view we wish to show that
a DPA model and its translation match each other.
This is possible by proving that a bisimulation exists
between the initial state of both models.

4.2.4 Logic translation

Uppaal does not support PCTL. It is possible to
translate queries on the form P≤0.8(tt U≤90 t

1
3 .active∧

t32 .ended) . Such a query is translated into P[time
<= 90] (<> (SDPA1.Task3 & tasksCompleted[2] >
2)) <= 0.8.

4.3 Continuous translation

In this section we translate the continuous time DPA
to a Uppaal model.
This Uppaal translation is similar to the discrete
time translation to Uppaal and uses many of the
same variables. The variables to model the tasks
are similar, except that broadcast channel end has
been replaced by the array of channels broadcast
channel end[n], so that each SDPA has its own chan-
nel. We assume tasks never end simultaneously - this
assumption is reasonable in a continuous time setting.

Figure 12 shows how a single task with duration [2; 3]
is modelled. In this model, we only define the upper

15

startNext[id] v >= 2
start?
v=0, startNext[id]=false tasksCompleted[id]++

end[id]!

waitingForTask1

v <= 3

EndTask1

Figure 12: A continuous time task modelled in Up-
paal.

start!

end[e]?
e : id_t

release(e)

chooseStart()

plan

run

Figure 13: A fp scheduler for a continuous time DPA
modelled in Uppaal.

and lower bound of the task. The Uppaal simulator
chooses uniformly amongst the possible values.

Since only one task ends at a time, the release func-
tion is made so that it requires an argument and re-
leases the resources used by the task completed by
the SDPA given. Figure 13 shows the fp scheduler
that starts these tasks. Starting tasks is performed in
the same way as in the discrete model. When a task
ends, it sends a signal through a channel only used
by one SDPA. The scheduler waits for an end signal
on all end channels and saves the index of the SDPA
sending the signal. This is given as an argument to
release.

5 Experiments

PRISM can verify properties and return an exact re-
sult. Uppaal can verify the same type of properties
using hypothesis testing, but cannot guarantee a cor-
rect result. Both tools can approximate the probabil-
ity of some property using simulations. In this section
we test the performance of the Uppaal and PRISM
translations. Before undergoing the tests we consider
a small language to describe DPAs in. Then we con-
sider a random generator that outputs DPAs in this
language.

5.1 DPA language

A small language called the DPA language has been
developed. Consider the following example:

1 dpa{
2 r e s ou r c e s { r e s1 =10, r e s2=5}
3 sdpa S1
4 {
5 task { durat ion [2 , 3]
6 r e s ou r c e s [r e s1 =7]}
7 task { durat ion [5 , 7]
8 r e s ou r c e s [r e s1 =6]}
9 }

10 sdpa S2
11 {
12 task { durat ion [1 , 3]
13 r e s ou r c e s [r e s1 =4]}
14 task { durat ion [4 , 8]
15 r e s ou r c e s [r e s1=3, r e s2 =4]}
16 }
17 }

The above snippet shows an example of a DPA ex-
pressed in the DPA language. Every DPA start with
dpa {, followed by a resource declaration in line 2 - this
represents the resource vector of available resources.
Lines 3-9 and 10-16 declare two SDPAs. Lines 5-6 de-
fine a single task with duration [2; 3] and requires 7
units of resource type res1. Tasks are executed in the
order they appear in the SDPA.

5.2 Generating random DPAs

We have developed a small tool to create DPAs in the
DPA language. This tool generates random models
based on the following parameters:

• Number of SDPAs n,

• number of tasks k,

• minimum duration of tasks mind,

• maximum duration of tasks maxd,

• minimum usage of each resource type minr,

• maximum usage of each resource type maxr, and

• number of resource types m.

The DPA generator creates a DPA with n SDPAs
with k tasks each. The tasks each have a duration

16

interval [a, b] where mind ≤ a ≤ b ≤ maxd. The
generated DPA has m resources each with a size
between minr and maxr. The duration (a, b) of
a task is found by first extracting a uniformly
from the set {mind,mind+1, . . . ,maxd − 1} and
afterwards extracting b be uniformly from the set
{a, a+ 1, . . . ,maxd}.

The resource demand of each task is chosen at ran-
dom. The goal is to create interesting models where
multiple tasks (preferably more than 2) are running
simultaneously. This means that tasks should seldom
require all resources at once, since this prevents all
other tasks from running. It should not be disallowed
either, since bottleneck situations, where a single task
is requiring all resources, can occur in real world prob-
lems. In the following we explain how these choices
are made.

Choosing size of resource types The size of each
resource type is extracted uniformly from the set
{minr,minr + 1, . . . ,maxr}.

Choosing resource demand of tasks A real
number between 0 and 1 is chosen with respect to a
beta distribution with parameters 4 and 5. The prob-
ability density function of this distribution is shown
in Figure 14

Figure 14: The beta distribution used by the DPA
generator for selecting the number of resource types
required by a task.

This number is multiplied by m and rounded up to
nearest the integer. This finds a number m′ between
0 and m. From all the resource types m′ are chosen
(uniformly) and for each of these, the amount needed
by the task is found using a beta distribution with
parameters 2 and 4 [6, Definition 6.9.2]. See Figure 15.

Figure 15: The beta distribution used by the DPA
generator for selecting the amount required of a spe-
cific resource type.

Two beta distributions are used to find the resource
usage of each task. The rationale behind this is as fol-
lows: The first beta distributions mean value is 44,4
% of the resource types and the second distribution
mean value is 33,3 % of the resources. This allows sev-
eral tasks to run concurrently, since tasks that require
all resources of a specific type are rare. Furthermore,
since only 33,3 % of the resources of a type are cho-
sen on average, several tasks can be started before the
resource are used up.

5.3 Test setup

When we perform an approximation test, we set the
confidence interval to δ = 0.05 and let the confidence
be 0.95. When we perform a hypothesis test, we let
the probability of type 1 and 2 errors be α = β = 0.05.
The size of the indifference region is set to 0.05.
PRISM can not run a hypothesis test using simula-
tion. Instead it can perform verification, always pro-
viding a correct answer. We perform verification in
PRISM with the sparse engine.

17

When performing a hypothesis test, a property is
needed. The properties we use specify a time limit
and a probability of all SDPAs ending before the time
limit is reached. In the following, when we perform a
hypothesis test or PRISM verification, the query for
a DPA is generated as follows: An approximation is
run on the continuous time model in Uppaal, approx-
imating the probability that all SDPAs end within a
certain time limit. The time limit chosen ismaxd ·n·k,
which is an upper bound on the time it takes for all
SDPAs to end. Uppaal returns a histogram as in Fig-
ure 16 containing the actual time (specified in small
intervals) spend to end all SDPAs and the frequency of
each outcome. We then find the time t at which point
60 % of the runs were completed. We then create
the following query: Is the probability that all SDPAs
end within t time units greater than 40 %? We use
the same query for both the discrete and continuous
models.
The reason that the query asks for "greater than 40
%" is that the hypothesis testing is not good at test-
ing a hypothesis P./θ(γ) when the true probability
of γ is close to θ. The confidence interval is set to
δ = 0.2 when generating a query. Hereby we reduce
the number of simulations Uppaal performs before
terminating. This is acceptable since we only con-
sider the histogram containing simulation data and
not the probability returned by Uppaal.

 0

 2

 4

 6

 8

 10

 12

 26 27 28 29 30 31 32 33 34 35 36 37

T
ra

c
e
s

Time

Figure 16: An example of a histogram generated from
the outout from Uppaal.

We perform the following tests:

5.3.1 Duration Test

The goal of this test is to see the effect of increasing
the size of the duration interval. We created two SD-
PAs without resources. The first has n = 4, k = 3
and the second has n = 20, k = 20. The duration
interval is fixed such that every task has the duration
[2l, 2 ·2l], where l ∈ Z>0. We test with different values
of l. For each model, we perform a PRISM verifica-
tion, PRISM approximation, Uppaal approximation
and Uppaal hypothesis test and measure the time
spend.

5.3.2 Performance test - small DPAs

In this test we create random models using the DPA
generator with n and k values less than 9 and the fol-
lowing parameters: mind = 1, maxd = 10, minr = 1,
maxr = 10 and m = 3. For each model generated,
we perform a PRISM verification, PRISM approxi-
mation, Uppaal approximation, Uppaal hypothesis
test and measure the time spend.

5.3.3 Performance test - medium DPAs

Parameters used: n ≤ 40, k ≤ 40, mind = 1, maxd =
40, minr = 1, maxr = 40 and m = 20. For each
model, we perform Uppaal hypothesis testing and
measure the time spend.

5.3.4 Performance test - large DPAs

Parameters used: n ≤ 55, k ≤ 55, mind = 1, maxd =
80, minr = 1, maxr = 80 and m = 40. For each
model, we perform Uppaal hypothesis testing on the
continuous time model and measure the time spend.

5.4 Results

In the following, we split the results into approxima-
tion results and hypothesis/verification results. We
write Uppaald (resp. Uppaalc) to denote the dis-
crete (resp. continuous) translation. All results are
presented in seconds. All results are mean values of
20 runs. For hypothesis testing and verification, the
same query is used in all 20 runs.

18

Duration PRISM Uppaald Uppaalc
[2, 4] 4.5 .6 .5
[4, 8] 6.8 .7 .5
[8, 16] 10.1 .8 .5
[16, 32] 15.7 .8 .5
[32, 64] 28.1 .9 .5
[64, 128] 57.9 1.0 .5

Table 1: Approximation result of the duration test
with n = 4 and k = 3.

Duration PRISM Uppaald Uppaalc
[2, 4] 2.6 .1 .1
[4, 8] 19.6 .1 .1
[8, 16] 274.4 .1 .1
[16, 32] - .1 .1
[32, 64] - .1 .1
[64, 128] - .1 .1

Table 2: Verification and hypothesis test result of the
duration test with n = 4 and k = 3. Entries with
“-” indicate the test took longer than 300 seconds and
was cancelled.

Duration Uppaald Uppaalc
[8, 16] 72.4 52.2
[16, 32] 95.0 52.4
[32, 64] 112.8 53.3
[64, 128] 129.4 52.2
[128, 256] 146.4 52.1
[256, 512] 173.8 52.3

Table 3: Approximation result of the duration test
with n = 20 and k = 20.

Duration Uppaald Uppaalc
[8, 16] 8.3 2.0
[16, 32] 8.0 2.2
[32, 64] 5.1 1.8
[64, 128] 5.2 1.6
[128, 256] 8.1 1.8
[256, 512] 11.6 1.8

Table 4: Hypothesis test result of the duration test
with n = 20 and k = 20.

n k PRISM Uppaald Uppaalc
2 6 5.0 .8 .6
3 6 9.9 1.3 1.0
4 6 17.2 1.9 1.4
5 6 30.6 2.7 2.1
6 6 46.0 3.4 2.6
6 2 9.4 1.1 .9
6 2 10.0 1.0 .8
6 3 15.0 1.7 1.4
6 4 23.6 2.2 1.7
6 5 36.0 2.9 2.3
7 7 79.6 4.9 3.9
8 8 137.8 6.9 5.5
9 9 232.0 9.7 8.1

Table 5: Approximation result of the small model test.

n k PRISM Uppaald Uppaalc
2 6 5.4 .1 .3
3 6 54.0 .1 .1
4 6 - .2 .2
5 6 - .2 .2
6 6 - .2 .3
6 2 91.3 .1 .1
6 3 - .1 .1
6 4 - .2 .2
6 5 - .2 .2
6 6 - .4 .2
7 7 - .2 .3
8 8 - .4 .3
9 9 - .4 .4

Table 6: Verification and hypothesis test result of the
small model test. Entries with “-” indicate the test
took longer than 300 seconds and was cancelled.

n k Uppaald Uppaalc
20 40 23.5 19.1
25 40 39.7 31.9
30 40 42.8 37.1
35 40 98.0 66.0
40 40 98.9 91.0
40 20 47.1 40.8
40 25 52.4 42.9
40 30 70.5 66.1
40 35 108.2 72.2

Table 7: Results of the medium test.

19

n k Uppaalc
40 55 219.5
45 55 247.8
50 55 323.8
55 55 390.3
55 40 307.0
55 45 294.8
55 50 342.7

Table 8: Results of the large test.

5.5 Discussion

Duration test

The results in Table 1 and 2 show that increasing the
duration interval slows both the PRISM approxima-
tion and verification. Uppaal’s is too fast on this
model to conclude anything about scalability.
Interestingly, Table 3 shows that the Uppaal approx-
imation is affected in the discrete case, but not in the
continuous time case. A possible explanation is that
the increased size of the model (due to the number
of edges) leads to longer loading times. The largest
discrete time model uses 16 MB space, and takes ≈7
seconds to load by Uppaal. This does not account for
the entire difference. Another possible explanation is
that Uppaal becomes slower due to the many edges
of the model.
Table 4 shows that the results of the hypothesis test
vary a lot, and the only observation we make is that
the continuous case seems to be unaffected by the in-
crease in duration intervals.

Performance test - small

The results in Table 6 show that PRISM verification
does not scale very well with model size. The results
in Table 5 indicates that the PRISM approximation
stops being efficient when n = 9, k = 9. The result
of the hypothesis test of Uppaalc for the duration
interval [2, 4] relates to the result of Bozga et al. [1].
They show how to verify properties concering untimed
behaviour by computing the exact probability of an
untimed behaviour. To cover 80 % of the possible
behaviours, their approach takes 355.17 seconds com-
pared to 0.1 second using our approach. Note that the
two approaches cannot be compared on the same ba-
sis - their result is precise and not subject to the ran-
domness of simulations. Nonetheless, this is a strong

argument in favour of using statistical modelchecking.

Performance test - medium

The result of the tests are shown in Table 7. It shows
that the continuous translation is faster than discrete
translation in all cases. Furthermore, it seems that a
larger value of n slows the hypothesis test more than
a large value of k. For instance, n = 40, k = 35 lasts
longer than n = 35, k = 40. All results in the table
support this observation.

Performance test - large

The result of the tests are shown in Table 8 and show
that the continuous time translation can be statisti-
cally verified effectively and efficiently. The observa-
tion from the previous test is also supported by this
data.

5.5.1 Possible errors

Some of the results do not seem consistent. We ex-
amine the possible causes. One of the main factors is
that the model is generated by a random generator.

The generator can assign very small or large duration
intervals, and this can influence the discrete transla-
tions (as shown in the duration test).
The number of transitions in a Uppaal or PRISM
run can also vary due to the randomness of the model.
If several tasks start (or end) simultaneously, this re-
duces the number of transitions made. This can be
influenced by the resource requirements generated by
the DPA generator.
Measurements of running time are not precise when
the running time is less than a second. For most of the
results of the small test, the Uppaal running times
are so small we cannot conclude which translation is
fastest.
As mentioned before, hypothesis testing does not per-
form well when the probability asked for is close to the
true probability. When this is the case, more runs are
required to produce a result. Hence if the query is
generated from a biased sample of all runs, it can in-
fluence the performance.
Hypothesis testing is also subject to bias by sheer ran-
domness. It is possible to get 50/200 satisfying runs
in a situation where we would expect 20/200, which is

20

enough to conclude that the hypothesis holds. Hence
the number of runs required varies and influences the
running time a lot. For instance, consider the dis-
crete translation in Table 7. The case n = 40, k = 40
is faster than the case where n = 40, k = 35. On
average, number of runs performed on the discrete
translation was 209.9 for n = 40, k = 40 , and 261.4
for n = 40, k = 35.

6 Conclusion

In this paper we have given a discrete time seman-
tics for Duration Probablilistic Automata with a fixed
priority scheduler. We have also given an informal
introduction to the semantics in a continuous time
setting. Duration Probabilistic Automata have been
translated into a PRISM model in a discrete time
setting and into Uppaal Timed Automata in both
continuous and discrete time settings. This gave us
a framework for testing how statistical model check-
ing performed compared to ordinary model checking.
We also compared the efficiency of the translations
against each other.
The tests show that the PRISM translation can only
handle relatively small models compared to both of
the Uppaal translations. The tests also show that
the continuous translation is more efficient than the
discrete Uppaal translation and can handle up to 55
SDPAs with 55 tasks.
The ability of the tools to approximate the probabil-
ity of satisfying a formula has also been tested. This
test show that PRISM can handle larger models when
approximating than when verifying.

6.1 Future work

The DPAs we consider are limited to executing tasks
once. In the future extending the DPA formalism to
circular executions would allow modelling more com-
plex systems. Another possible extension is to let
some tasks produce resources and let other consume
resources at a given rate. This poses questions such
as "what is the probability that the available resources
never drop below x within y time units".
Adding the possibility of producing/consuming re-
sources would also allow the modelling of inter-SDPA
dependencies i.e. that the execution of a task in one
SDPA requires that a task in another SDPA has been
executed.

References
[1] Marius Bozga, Jean-Francois Kempf, Kim G.

Larsen, Bruce H. Krogh, and Oded Maler. Com-
paring schedulers in a probabilistic setting. 2010.

[2] Hans Hansson and Bengt Jonsson. A logic for rea-
soning about time and reliability. Formal Asp.
Comput., 6(5):512–535, 1994.

[3] Marta Z. Kwiatkowska, Gethin Norman, and
David Parker. Prism 2.0: A tool for probabilistic
model checking. In QEST, pages 322–323. IEEE
Computer Society, 2004. ISBN 0-7695-2185-1.

[4] Kim Guldstrand Larsen, Paul Pettersson, and
Wang Yi. Uppaal in a nutshell. STTT, 1(1-2):
134–152, 1997.

[5] Oded Maler, Kim G. Larsen, and Bruce H. Krogh.
On zone-based analysis of duration probabilistic
automata. Submitted to INFINITY 2010, 2010.

[6] Peter Olofsson. Probability, Statistics and Stochas-
tic Processes. John Wiley and Sons, 2005.

[7] Håkan L. S. Younes. Verification and Planning for
Stochastic Processes with Asynchronous Events.
PhD thesis, Carnegie Mellon University, 2005.

21

A Fixed priority scheduler implementation in Uppaal

void chooseStar t ()
{

i n t i =0, j =0;
bool enoughResources ;
i n t r e s e rved [m] ;
whi l e (i < n)
{

i f (wa i t ing [i])
{

j = 0 ;
enoughResources = true ;
whi l e (j < m)
{

i f (r e s ou r c e s [j] < resUsage [i] [tasksCompleted [i]] [j]
& resUsage [i] [tasksCompleted [i]] [j] != 0)

enoughResources = f a l s e ;
j++;

}
i f (enoughResources)
{

takeResources (i) ;
s tar tNext [i] = true ;
wa i t ing [i] = f a l s e ;

}
}
i++;

}
}

22

B Full PRISM translation

The model translated is the DPA in Section 5.1.

dtmc
module s chedu l e r
doPayback : bool i n i t f a l s e ;
counter : [1 . . 3] i n i t 1 ;
p lanning : bool i n i t t rue ;
timePassed : [0 . . 2 1] i n i t 0 ;
r e s2 : [0 . . 5] i n i t 5 ;
r e s1 : [0 . . 1 0] i n i t 10 ;

[] ((! doPayback)&planning&counter=3) −>
1/1 : (planning ’= f a l s e) ;

[] (counter=3&doPayback&(! paybackS1)&(! paybackS2)&planning) −>
1/1 : (counter ’=1)&(doPayback ’= f a l s e) ;

[end] ((! p lanning)&(! (taskS1=3&taskS2=3&true))) −>
1/1 : (counter ’=1)&(planning ’= true)&(doPayback ’= true) ;

[de lay] ((! p lanning)&timePassed <21) −>
1/1 : (planning ’= f a l s e)&(timePassed ’= timePassed+1);

[p1payback2] (counter =1&(!(! doPayback))& res1<=4&true) −>
1/1 : (counter ’= counter+1)&(res1 ’= re s1 +6);

[] (p lanning&counter=1&taskS1=2&(! ac t iveS1)&(res1 <6| f a l s e)&(! doPayback)&true) −>
1/1 : (counter ’= counter +1);

[s t a r tp1] ((! doPayback)&planning&counter=1&taskS1=2&(! ac t iveS1)&res1>=6&true&true) −>
1/1 : (counter ’= counter+1)&(res1 ’= res1 −6);

[] (counter =1&(!(! doPayback))&(! paybackS1)&true) −>
1/1 : (counter ’= counter +1);

[p1payback1] (counter =1&(!(! doPayback))& res1<=3&true) −>
1/1 : (counter ’= counter+1)&(res1 ’= re s1 +7);

[] (p lanning&counter=1&taskS1=1&(! ac t iveS1)&(res1 <7| f a l s e)&(! doPayback)&true) −>
1/1 : (counter ’= counter +1);

[] (p lanning&counter=1&taskS1=3&(! ac t iveS1)&(! doPayback)&true) −>
1/1 : (counter ’= counter +1);

[] (p lanning&counter=1&taskS1<3&act iveS1 &(! doPayback)&true) −>
1/1 : (counter ’= counter +1);

[s t a r tp1] ((! doPayback)&planning&counter=1&taskS1=1&(! ac t iveS1)&res1>=7&true&true) −>
1/1 : (counter ’= counter+1)&(res1 ’= res1 −7);

[p2payback2] (counter =2&(!(! doPayback))& res1<=7&res2<=1&true) −>
1/1 : (counter ’= counter+1)&(res1 ’= re s1+3)&(res2 ’= re s2 +4);

[] (p lanning&counter=2&taskS2=2&(! ac t iveS2)&(res1 <3| res2 <4| f a l s e)&(! doPayback)&true) −>
1/1 : (counter ’= counter +1);

[s t a r tp2] ((! doPayback)&planning&counter=2&taskS2=2&(! ac t iveS2)&res1>=3&res2>=4&true&true) −>
1/1 : (counter ’= counter+1)&(res1 ’= res1 −3)&(res2 ’= res2 −4);

[] (counter =2&(!(! doPayback))&(! paybackS2)&true) −>
1/1 : (counter ’= counter +1);

[p2payback1] (counter =2&(!(! doPayback))& res1<=6&true) −>
1/1 : (counter ’= counter+1)&(res1 ’= re s1 +4);

[] (p lanning&counter=2&taskS2=1&(! ac t iveS2)&(res1 <4| f a l s e)&(! doPayback)&true) −>
1/1 : (counter ’= counter +1);

[] (p lanning&counter=2&taskS2=3&(! ac t iveS2)&(! doPayback)&true) −>
1/1 : (counter ’= counter +1);

[] (p lanning&counter=2&taskS2<3&act iveS2 &(! doPayback)&true) −>
1/1 : (counter ’= counter +1);

23

[s t a r tp2] ((! doPayback)&planning&counter=2&taskS2=1&(! ac t iveS2)&res1>=4&true&true) −>
1/1 : (counter ’= counter+1)&(res1 ’= res1 −4);

endmodule

module p1
taskS1 : [1 . . 3] i n i t 1 ;
c lockS1 : [0 . . 7] i n i t 7 ;
paybackS1 : bool i n i t f a l s e ;
ac t iveS1 : bool i n i t f a l s e ;

[end] (ac t iveS1 &(! c lockS1=0)&min (clockS1 , c lockS2)=0&taskS1 <3&(!paybackS1)&true) −>
1/1 : (c lockS1 ’= clockS1) ;

[end] (ac t iveS1&clockS1=0&taskS1 <3&(!paybackS1)&true) −>
1/1 : (act iveS1 ’= f a l s e)&(taskS1 ’= taskS1+1)&(clockS1 ’=7)&(paybackS1 ’= true) ;

[end] ((! c lockS1=0)&(! ac t iveS1)&(! paybackS1)&true) −>
1/1 : (act iveS1 ’= f a l s e) ;

[de lay] ((! ac t iveS1)&(! paybackS1)&true) −> 1/1 : (act iveS1 ’= f a l s e) ;
[de lay] (ac t iveS1&clockS1>0&taskS1 <3&(!paybackS1)&true) −>

1/1 : (c lockS1 ’=clockS1 −1);

[s t a r tp1] ((! ac t iveS1)&(! paybackS1)&taskS1=2&true) −>
1/3 : (act iveS1 ’= true)&(clockS1 ’=5)+
1/3 : (act iveS1 ’= true)&(clockS1 ’=6)+
1/3 : (act iveS1 ’= true)&(clockS1 ’=7) ;

[s t a r tp1] ((! ac t iveS1)&(! paybackS1)&taskS1=1&true) −>
1/2 : (act iveS1 ’= true)&(clockS1 ’=2)+
1/2 : (act iveS1 ’= true)&(clockS1 ’=3) ;

[p1payback2] (paybackS1&taskS1=3) −>
1/1 : (paybackS1 ’= f a l s e) ;

[p1payback1] (paybackS1&taskS1=2) −>
1/1 : (paybackS1 ’= f a l s e) ;

endmodule
module p2

taskS2 : [1 . . 3] i n i t 1 ;
c lockS2 : [0 . . 8] i n i t 8 ;
paybackS2 : bool i n i t f a l s e ;
ac t iveS2 : bool i n i t f a l s e ;

[end] (ac t iveS2 &(! c lockS2=0)&min (clockS1 , c lockS2)=0&taskS2 <3&(!paybackS2)&true) −>
1/1 : (c lockS2 ’= clockS2) ;

[end] (ac t iveS2&clockS2=0&taskS2 <3&(!paybackS2)&true) −>
1/1 : (act iveS2 ’= f a l s e)&(taskS2 ’= taskS2+1)&(clockS2 ’=8)&(paybackS2 ’= true) ;

[end] ((! c lockS2=0)&(! ac t iveS2)&(! paybackS2)&true) −>
1/1 : (act iveS2 ’= f a l s e) ;

[de lay] ((! ac t iveS2)&(! paybackS2)&true) −>
1/1 : (act iveS2 ’= f a l s e) ;

[de lay] (ac t iveS2&clockS2>0&taskS2 <3&(!paybackS2)&true) −>
1/1 : (c lockS2 ’=clockS2 −1);

[p2payback2] (paybackS2&taskS2=3) −>
1/1 : (paybackS2 ’= f a l s e) ;

24

[p2payback1] (paybackS2&taskS2=2) −>
1/1 : (paybackS2 ’= f a l s e) ;

[s t a r tp2] ((! ac t iveS2)&(! paybackS2)&taskS2=2&true) −>
1/5 : (act iveS2 ’= true)&(clockS2 ’=4)+
1/5 : (act iveS2 ’= true)&(clockS2 ’=5)+
1/5 : (act iveS2 ’= true)&(clockS2 ’=6)+
1/5 : (act iveS2 ’= true)&(clockS2 ’=7)+
1/5 : (act iveS2 ’= true)&(clockS2 ’=8) ;

[s t a r tp2] ((! ac t iveS2)&(! paybackS2)&taskS2=1&true) −>
1/3 : (act iveS2 ’= true)&(clockS2 ’=1)+
1/3 : (act iveS2 ’= true)&(clockS2 ’=2)+
1/3 : (act iveS2 ’= true)&(clockS2 ’=3) ;

endmodule

25

C Full Uppaal discrete translation

The model translated is the DPA in Section 5.1. The system declarations contains:

const i n t n = 2 ;
const i n t k = 2 ;
const i n t m = 2 ;
typede f i n t [0 , n−1] id_t ;
bool s tar tNext [n] ;
i n t tasksCompleted [n] ;
broadcast chan s t a r t ;
broadcast chan end ;
bool ended [n] ;
bool wa i t ing [n]={ true , t rue } ;

i n t r e s ou r c e s [m]={10 , 5} ;
i n t resUsage [n] [k] [m]= {{{7 ,0} ,{6 ,0}} ,{{4 ,0} ,{3 ,4}}} ;

void takeResources (id_t sdpa)
{

i n t i = 0 ;
whi l e (i < m)
{

r e s ou r c e s [i] −= resUsage [sdpa] [tasksCompleted [sdpa]] [i] ;
i++;

}
}

void r e l e a s eRe sou r c e s (id_t sdpa)
{

i n t i =0;
whi l e (i < m)
{

r e s ou r c e s [i] += resUsage [sdpa] [tasksCompleted [sdpa] −1] [i] ;
i++;

}
}

void r e l e a s e ()
{

i n t i =0;
whi l e (i < n)
{

i f (ended [i])
{

r e l e a s eRe sou r c e s (i) ;
ended [i]= f a l s e ;
i f (tasksCompleted [i] < k)

wai t ing [i]= true ;
}
i++;

}
}

void chooseStar t ()
{

i n t i =0, j =0;

26

bool enoughResources ;
i n t r e s e rved [m] ;
whi l e (i < n)
{

i f (wa i t ing [i])
{

j = 0 ;
enoughResources = true ;
whi l e (j < m)
{

i f (r e s ou r c e s [j] < resUsage [i] [tasksCompleted [i]] [j]
& resUsage [i] [tasksCompleted [i]] [j] != 0)

{
enoughResources = f a l s e ;

}
j++;

}
i f (enoughResources)
{

takeResources (i) ;
s tar tNext [i] = true ;
wa i t ing [i] = f a l s e ;

}
}
i++;

}
}

The generated model consists of a scheduler module (Section 4.2.2) and the following Timed Automata,
representing SDPA S1 and S2 in discrete time:

v >= duration
startNext[id]

v >= duration

v=0, startNext[id]=false

v<=duration

v >= duration

startNext[id]
v >= duration

v<=duration
duration = 6

duration = 5

duration = 7

tasksCompleted[id]++,
ended[id]=true

duration = 2

duration = 3

v=0, startNext[id]=false
tasksCompleted[id]++,
ended[id]=true

tasksCompleted[id]++,
ended[id]=true

tasksCompleted[id]++,
ended[id]=true

start?
end!

Task1 waitingForTask2waitingForTask1 Task2 End

end?

end!

end?

start?

v=0, startNext[id]=false

v >= duration

duration = 1

duration = 2

duration = 3

v >= duration v >= duration

v >= duration

startNext[id]startNext[id]

duration = 7

duration = 6

duration = 8

tasksCompleted[id]++,
ended[id]=true

tasksCompleted[id]++,
ended[id]=true

tasksCompleted[id]++,
ended[id]=true

duration = 5
v=0, startNext[id]=false

duration = 4

tasksCompleted[id]++,
ended[id]=true

end?

start?
end!

start?

Task1 waitingForTask2waitingForTask1 Task2 End

v<=durationv<=duration

end!

end?

27

D Full Uppaal continuous translation

The model translated is the DPA in Section 5.1. The system declarations contains:

const i n t n = 2 ;
const i n t k = 2 ;
const i n t m = 2 ;
typede f i n t [0 , n−1] id_t ;
bool s tar tNext [n] ;
i n t tasksCompleted [n] ;
broadcast chan s t a r t ;
broadcast chan end [n] ;
bool wa i t ing [n]={ true , t rue } ;

i n t r e s ou r c e s [m]={10 , 5} ;
i n t resUsage [n] [k] [m]= {{{7 ,0} ,{6 ,0}} ,{{4 ,0} ,{3 ,4}}} ;

void takeResources (id_t sdpa)
{

i n t i = 0 ;
whi l e (i < m)
{

r e s ou r c e s [i] −= resUsage [sdpa] [tasksCompleted [sdpa]] [i] ;
i++;

}
}

void r e l e a s eRe sou r c e s (id_t sdpa)
{

i n t i =0;
whi l e (i < m)
{

r e s ou r c e s [i] += resUsage [sdpa] [tasksCompleted [sdpa] −1] [i] ;
i++;

}
}

void r e l e a s e (id_t sdpa)
{

r e l e a s eRe sou r c e s (sdpa) ;
i f (tasksCompleted [sdpa] < k)

wai t ing [sdpa]= true ;
}

void chooseStar t ()
{

i n t i =0, j =0;
bool enoughResources ;
i n t r e s e rved [m] ;
whi l e (i < n)
{

i f (wa i t ing [i])
{

j = 0 ;
enoughResources = true ;
whi l e (j < m)
{

28

i f (r e s ou r c e s [j] < resUsage [i] [tasksCompleted [i]] [j]
& resUsage [i] [tasksCompleted [i]] [j] != 0)

{
enoughResources = f a l s e ;

}
j++;

}
i f (enoughResources)
{

takeResources (i) ;
s tar tNext [i] = true ;
wa i t ing [i] = f a l s e ;

}
}
i++;

}
}

The generated model consists of a scheduler module (Section 4.3) and the following Timed Automata, represent-
ing SDPA S1 and S2 in continuous time:

v <= 7

startNext[id] v >= 2

v <= 3

end[id]!start?
tasksCompleted[id]++ v=0, startNext[id]=false

startNext[id]

v=0, startNext[id]=false

v >= 5

tasksCompleted[id]++

EndTask2waitingForTask1 waitingForTask2Task1

end[id]!start?

v <= 8

startNext[id] v >= 1

v <= 3

end[id]!start?
tasksCompleted[id]++ v=0, startNext[id]=false

startNext[id]

v=0, startNext[id]=false

v >= 4

tasksCompleted[id]++

EndTask2waitingForTask1 waitingForTask2Task1

end[id]!start?

29

E DPA modelling language grammar

The grammar of the DPA modelling language. The final 3 rules are recognized by a lexical analyser and are
specified in EBNF, while the other rules are specified in BNF. Bold text indicates terminal tokens.

Dpa := dpa { ResourceDeclaration SdpaList }
Sdpa := sdpa Name { TaskList }
Task := task { Duration ResourceUsage }

| task { Duration }
ResourceDeclaration := resources { ResourceQuantityList }
ResourceQuantityList := ResourceQuantity

| ResourceQuantity , ResourceQuantityList
ResourceUsage := resources [ResourceQuantityList]
ResourceQuantity := Name = Number
TaskList := Task

| Task TaskList
SdpaList := Sdpa

| Sdpa SdpaList
Duration := duration [Number , Number]
Name := Letters Number?
Letters := [a− z,A− Z]+

Number := [0− 9]+

30

	Introduction
	Duration Probabilistic Automata
	Scheduler Specification
	Continuous DPA

	Logic specifications and statistical model checking
	Trace
	Logic
	Hypothesis testing

	Translations
	PRISM
	SDPA module
	Scheduler module
	Logic translation

	Uppaal
	SDPA modeling
	Scheduler modeling
	Comparison with DPA semantics
	Logic translation

	Continuous translation

	Experiments
	DPA language
	Generating random DPAs
	Test setup
	Duration Test
	Performance test - small DPAs
	Performance test - medium DPAs
	Performance test - large DPAs

	Results
	Discussion
	Possible errors

	Conclusion
	Future work

	Fixed priority scheduler implementation in Uppaal
	Full PRISM translation
	Full Uppaal discrete translation
	Full Uppaal continuous translation
	DPA modelling language grammar

